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The effects of 6nal state pion-pion interactions on the spectrum of E+ -+ 3m decay is studied by dispersion
relation methods. In the approximations adopted we are led to a set of linear integral equations for the
amplitudes of the, E —+ 3~ decay. The kernels in these equations depend on the pion-pion S-wave scattering
amplitudes. An approximate solution for these equations is obtained by iteration and the departures from a
purely statistical spectrum for the decay are related to pion-pion S-wave scattering. The latter in turn is
assumed to be well represented with a scattering length structure. The E+~ 32' spectrum then is para-
metrized by two quantities, the 7=0 and T=2 pion-pion S-wave scattering lengths, uo and a2. Such experi-
mental results as presently exist indicate that a& —ao is positive and that roughly a2 —ao =0.7, in units of the
pion Compton wavelength.

I. INTRODUCTION

'T is a reasonable expectation, ' based on centrifugal
- ~ barrier considerations, that the amplitude for
E+—+ 3m decay should be essentially constant, the de-
cay spectrum being governed therefore mainly by phase
volume. In roughest approximation this expectation is
borne out experimentally and implies that the pions
come out predominantly in S waves in a state which is
totally symmetric in isotopic spin space. Of the two such
states, corresponding, respectively, to isotopic spin T= 1
and T=3, it is the former which dominates as one de-
duces from the excess of v-events (E+~ z. +z++Ir+)
over r'-events (X+~m++Ir'+Ir'). This is one of the
well-known pieces of evidence for the conjectured

~
DT l =-', selection rule for weak interactions (more pre-

cisely, it is evidence for ~|AT ~

(-,').
Despite these rough indications, a closer examination

of the spectrum of the v mode reveals a noticeable de-
parture from the purely statistical. ' Relative to the
latter, the + distribution appears to be a growing func-
tion of energy; the m+ distribution, a decreasing func-
tion. In fact the x variation from the lowest to the
highest energies seems to be of order 50% and the z.+
variation about half of this. These are only rough esti-
mates. The experimental errors are still quite large and
it is not impossible that these effects are largely spurious.
If confirmed, however, they would reflect either an
"intrinsic" property of E—+ 3m decay or, what is our
concern here, an eGect of pion-pion "final state" inter-
actions. Of course, this distinction between intrinsic and
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final state eGects cannot be made precise in general
terms. Nevertheless, in the dispersion treatment to be
discussed here, we shall adopt a set of approximations
which are well-defined, whether or not they are ade-
quate, and the variations in the decay amplitude will be
clearly related to pion-pion scattering effects. '

Our procedure is as follows. Concerning the weak
interaction itself, we assume the validity of time-reversal
invariance and of the ~DT~ =-,'selection rule. For
charged E-meson decay, the latter implies that the anal
three-pion system has isotopic spin T=1. The decay
process is then characterized by three amplitudes, corre-
sponding to the three possible T= 1 states. Next, on the
basis of familiar heuristic arguments, we conjecture that
these amplitudes satisfy certain dispersion representa-
tions. In the approximation where we retain only the
lowest mass intermediate states, the absorptive parts in
these representations involve products of the decay
amplitudes themselves with the amplitudes for pion-
pion scattering. Our dispersion relations are of the sub-
tracted variety, a circumstance which one hopes will
insure the rapid convergence of the dispersion integrals.
We therefore suppose that only low-energy pion-pion
scattering contributes signi6cantly and we take into
account S-wave eGects only. A possible I'-wave reso-
nance at a relatively high-energy on our scale has been
conjectured in another connection. ' We are taking the
view, however, that these and other high mass contribu-
tions m ayappreciably aGect the "subtraction" con-
stant, i.e. ,the absolute decay rate, but not the spectrum
shape which concerns us here.

At this stage we have a set of coupled linear integral
equations for the decay amplitudes, involving in their
kernels the T=0 and T= 2 S-wave pion-pion scattering

3 A phenomenological analysis of pion-pion scattering effects on
r-decay has been carried out independently by B. S. Thomas and
K. G. Holladay, Phys. Rev. 115,1329 (1959).They make use of the
6nal state theorem of K. M. Watson, Phys. Rev. 88, 1163 (1952);
and assume only an attractive x+—m.+ force.

4 W. R. Frazer and J.R. Fulco, Phys. Rev. Letters 2, 365 (1959).



N. N. KHURI AN 0 S. B. TRE I MAN

amplitudes. The scattering amplitudes themselves, in
the absence of other indications, we parametrize in a
scattering length representation; so that the whole prob-
lem is parametrized with two quantities, ao and a2, the
T=O and T=2 scattering lengths. This scattering
length structure accords reasonably well with the so-
called S-wave dominant solution of the pion-pion prob-
lem obtained by Chew et al. '

We have not succeeded in ending a rigorous solution to
our integral equation. Instead, in order to survey the
situation we adopt the lowest order iterative solution,
regarding the departures from a statistical decay spec-
trum as being small, a not unreasonable approach in
view of the actual experimental indications. Our results
reproduce the experimental situation well enough, with
as —as=0.7 (in units of the pion Compton wavelength).

Mp; p, =A8p 8p,+Bbppb, +CRT,B p,

where the amplitudes A, 8, C are functions of the scalar
variables

s.= —(E k.)', —
ss= —(E—ks)',

s,= —(E—k,)'.
(2)

Only two of these are independent, energy-momentum
conservation implying

s +ss+s, =sms+3ps.

It is nevertheless convenient to display all three varia-
bles, so that we write A =A (s.,ss,s,) and similarly for
8 and C.

Prom the Bose statistics of the three pion system we
have the symmetries

(ss+~ s., s, ~+- s,): (B~~C, A +~ A),

(s~ ~~s~, ss ~+- ss): (A +~ C, B+~B),
(s,~ ss, s, ~ s,): (A ~B, C~~C).

(3)

5 G. F. Chew, S. Mandelstam, H. P. Noyes, UCRL-9001 (to be
published).

II. KINEMATICS

Denote the three pions emerging from E-meson decay
by the letters a, b, c; let k„k&, k, be their respective
4-momenta (k,'=kss=k, '= —ps, where p is the pion
mass); and let a, P, y denote the respective charge states.
Denote by E the 4-momentum of the E-meson
(E'= —m'). Since we shall be 'considering only E+
decay, and since we suppose the pions come out in T= 1
states, we can as a matter of convenience pretend that
the E meson has isotopic spin unity and that isotopic
spin is conserved in the decay. This merely simplifies
some of the writing and involves no error. Using this
artifice, we denote by p the charge state of the E meson.
The invariant matrix element 3f for E—+ 3x decay can
then be written

Notice that A =B=Cat the symmetric point so=s, =s&
=S,= -'sm'+lu'.

Consider now the r-mode, E+—+ m++s.++s . Let s~

and s~ refer to the positive pions, s3 to the negative pion.
The squared matrix element is then

fM, f'= fA(sg, ss, ss)+B(sg,ssi ss) f'. (4)

Similarly, for the r' mode, E+-+ m'+&'+&+, let s& and
ss again refer to the like pions, ss to the unlike (m+) pion.
The squared element is

fM, f'= fC(s~,ss., ss) f'.

For either mode, the decay spectrum is given by

dk, dk, dk,
fMf' 8(E—kg —ks —ks), (6)

(2m)s 2Es 2~q 2~s 2~s

where E', co&, cv2, co3 are, respectively, the energies of the
E meson and of the three pi-mesons. In the E-meson
rest system the maximum pion kinetic energy is
given by

2m

Let t;= T;/F be the kinetic energy of the ith pion, in
units of T. In a nonrelativistic treatment of the decay
spectrum it is probably most convenient' to take as the
two independent variables the quantities

Owing to energy-momentum conservation these varia-
bles satisfy

x'+y'& 1

that is, E—+ 3x events must be within a unit circle in
the x-y plane. Aside from a constant factor, the decay
spectrum, in the nonrelativistic limit, is given by

d(o(x,y) =
f
M f'dxdy. (10)

Notice that, in the case where the pions are emitted in
S-waves in the totally symmetric isotopic spin state with
T=1, we have A=B=C=constant, hence fM, fs

=4
f
M, f'= const. We are looking for departures from

these conditions induced by final state pion-pion
interactions.

One final remark needs to be made. We are assuming
the validity of charge independence in the strong inter-
actions. In computing the decay amplitudes we there-
fore neglect, for example, the difference in mass between
charged and neutral pions. There is no reason to think
that this is a bad approximation. But in any careful
analysis of experimental data these mass differences
should be taken into account in the phase volume
effects. The question does not arise for the v decay mode.
It does arise, however, for the v' mode, and therefore
also in any careful comparison of the two modes. We are
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neglecting Coulomb effects which can presumably be
handled by the standard penetration barrier corrections
to the data.

III. DISPERSION REPRESENTATION

There exists as yet no entirely satisfactory formalism
for treating decay processes in quantum field theory.
However, in so far as we treat such processes only to
lowest order in the weak interaction, there is little doubt
as to the correct procedure. ' The decay amplitude is
presumably given by the matrix element of the weak
interaction Hamiltonian density H, taken between the
initial and final physical states determined by the strong
interactions. For our process the matrix element in
question is

(k,k k, out ~H(0) ~E),

where the index "out" refers to the strong interactions
only and II(0) is a local operator. As a matter of minor
convenience we shall prefer to work with the complex
conjugate matrix element and it is this latter which we
denote by 3II $Eq. (1)j. Nothing is lost thereby, since
the decay spectrum is anyhow determined by the square
of the absolute value of the matrix element. Since we are
assuming invariance under time reversal, we can write

3E=(EjH(0) ik k~k, out).

The isotopic labels are momentarily suppressed.
Following the standard reduction procedures, we now

reduce this to the form

3II=
I

~dS dS 8'~ '*+'~~'~~

X(EIZ(j.(*.),jp(»); H(0)) lk, ), (12)

where the symbol 2 denotes the advanced multiple
commutator product~; and j and jp are the currents for
mesons of isotopic spin n and P, respectively. Even
though the matrix element in (12) vanishes when either
x or xg lies outside the future light cone, we do not
know how to proceed and obtain, even heuristically, a
dispersion relation for 3E. To get around this difficulty
we shall use the definition of the g and 3 products and
write M as the sum of two terms. For the erst of these
terms we shall heuristically obtain a dispersion relation.
The second term turns out to be equal to the absorptive
part (multiplied by —2i) that appears in the dispersion
relation for the erst term. It can thus be absorbed into
the integral to give a dispersion type representation for
3f. This trick not only enables us to obtain an integral

'A detailed discussion of this point has been given by K.
Symanzik, see the mimeographed notes on a seminar given during
the course on Elementary particles at Oberwolfach, Slack Forest,
Germany, 1958 (unpublished).

'For a definition of the. R products see H. Lehmann, K.
Symanzik, and W. Zimmermann, Nuovo cimento 6, 319 (1957);
also K. Nishijima, Progr. Theor. Phys. (Kyoto) 17, 765 (1957).
The advanced or 2 products are obtained from the E products by
changing the sign of the arguments of the 8-functions and putting—i for each ~.

representation for M, but as we shall see below also leads
to considerable simplihcation of the problem of handling
a three-body final state interaction.

It is an elementary matter to recast (12) into the form

&&(EI f5j.(~.),H(0)l,j (*)jg(*.)lk.), (13)
where

cd I dg gg gtkg ~ s~+'blcg ~ sQ

J u 5

X(El&(j.(*.);j (* ),H(0)) Ik,). (14)

The symbol E denotes a retarded multiple commutator. ~

The identity (13) is an immediate consequence of the
definition of the retarded and advanced products.

The matrix element BR has the same retarded operator
product that one would obtain if he considers the
amplitude for the scattering type reaction, u+E +6+c. —
In fact, 5K is a continuation to unphysical energy
(co (0) of the amplitude for this reaction. Using transla-
tion invariance, we may write

m= I'd.dy, "-"'
J

)&(E(E(j (x/2); jp(—x/2), H(y)) ~
k.). (15)

The retarded product here vanishes when x is outside
the future light cone. This is the standard circumstance
which affords a heuristic basis for the conjecture of dis-
persion relations —for the time-like component of the
vector (k,—kt)/2, in the "brick wall" system K+K,=0.
Generalizing to an arbitrary reference frame, we are lead
to conjecture analyticity in the variable s,= —(E—k )',
for fixed s,= —(E—k,)'. Leaving aside for the moment
the question of subtractions, and restoring the isotopic
spin labels in order to bring out the symmetries implied
by (3), we have

1 t" 4,;-p~(s.',s)
5K' crPp= — ' — ds~

~ 4 4p~ sg —$~ Z6

1 t "y,,p, (sp', s,)+— dsg'+Gp, . p, (s,), (16)
K ~ 4

2 sy —sg+zt

where G(s,) is at this stage an arbitrary function of the
variable s,. Notice the reversal of order of the labels e
and P in the second term, a consequence of the sym-
metries (3). The dispersion relation (16) can be con-
sidered to be obtained from that for the scattering like
reaction a+E —+ b+c by analytic contin' uation in the
variable s, from negative to positive values.

The absorptive parts p are obtained in the standard
way by taking the difference between R(j (x/2);
jp(—x/2), H(y)) and E(jp(—x/2); j (x/2), H(y)). Ex-
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panding in a sum over intermediate states
I 44), we have

4', -p~(S.,S.)

(24r)4 r

dx e" *(EIR(j (x); H(0))l r4)

~(~lap(0) Ik )+(&Ij-(o) l~)

&&(44IR(jp(x); H(0)) Ik,) b(44 ks —k.).—(17)

The crucial remark now is that the function which
appears on the right-hand side of (13), when expressed
as an expansion over the set of states I44), is just pre-
cisely equal to 2ip, , p~(s—„s,).' Thus we have

be necessary to deal with matrix elements of the form
(3s.

I
3s). However, in resorting to the splitting given in

(13) we have avoided this difficulty and have to deal
only with (24rl2s. ) and (4s I2s) matrix elements. The
latter one can presumbably neglect since they start
contributing to g at a much larger threshold.

The absorptive part then involves a product of the
decay amplitude M itself with the amplitude for pion-
pion scattering. The sum over intermediate states is
equivalent to an integration over the direction of the
intermediate mesons, in the reference frame where
ks+k, =0. To effect this integration, it is convenient to
regard M(k, ks, k,) as a function of s, and of the angle
gs, between k, and ks ———k,=k in this reference frame.
Thus k is the wave number of the scattering mesons in
their center of momentum frame, and

~n; ~pe ~l; ~pe 2~@1;~p7 (18)
s,=4(k'+i4'). (20)

Substituting (16) into (18), we obtain the following
representation for M

1 r" P,,.p, (s.',s,)
M, , p~=- ds '

K ~4s4 S~ —Sg+se

1 P 4', ;p (ss s)
+— dss'+G„, .p, (s,). (19)

SS —SS+1,e

Notice that the only difference between (19) and the
dispersion relation (16) is the sign of the ic in the first
term.

The intermediate state with lowest mass which con-
tributes to the ffrst term on the right side of (17) is the
two pion state, with threshold at 4y'. The lowest mass
state which contributes to the second term is the E—&

state, with threshold. at (4r4+i4)'. It will be our approxi-
mation to retain contributions only from the lowest
mass states. Thus we neglect entirely the second term in
(17); and in the first term we insert only the two pion
contributions (the next state would be that of four
pions, with threshold at 16@'). The physical values of
the variables s„sq, and s, all lie in the range 4p,'&s
((4N —i4)'; and thus the maximum physical value of
any s is much below the thresholds 16i4' and (m+i4)'.
The neglect of higher mass contributions is even less
serious because we shall ultimately adopt a subtracted
form of the dispersion representation. The higher mass
states can be regarded as contributing mostly to the sub-
traction constant, which we in any case do-not attempt
to compute. We are only neglecting their contributions
to the varieties of M with pion energies, at low energies.
In other words we are attempting fo deal with the
shape, not the absolute level, of the decay spectrum.

We note here that in (17) no intermediate states of
three pions appear. One might have thought that in
studying a problem with a three pion final state, it would

'Pote added in proof This statem. —ent is of course only true
for s (16'~. At this stage Kq. (18) is used only for physical M.
In the unphysical region M is dehned by continuation from (19).

For the same kinds of reasons discussed above in
relation to neglecting the higher mass states, we shall
now suppose that only low-energy pion-pion scattering
contributes significantly to the shape of the decay
spectrum. We therefore take into account only S-wave
scattering. As we have mentioned earlier the maximum
physical value of s, is (4ri —p)s=6.25i4s, on the other
hand the I'-wave resonance conjectured by Frazer and
Fulco4 is located at some value of s,&10@,'.

Rejecting the isotropy which the assumption of pure
S-wave scattering implies, we then 6nd that the absorp-
tive part p depends only on s, and is independent of s,.
On carrying out the integrations, we have

(S.)
I. dQs,

=Z ~', -p~(s. , cosgs) fp~', p. (s) (»)
P'v' i. ~ 4'

where f is related to the pion-pion scattering ampli-
tude by

fp ~'p~=s(fo fs)8P;&pr+—,'fs(5P pb, ,+-5p, b„p), (22)

fr=e'sr sinbr., 7=0, 2. (23)

Here bo and 82 are, respectively, the T=O and T=2
S-wave phase shifts for pion-pion scattering.

It is now evident how we must choose the as yet un-
speciffed function G(s,) which appears in (19). The
Bose statistics dictate that this must have the same
form as the other two terms in the equation, with the
isotopic labels appropriately chosen to reQect the sym-
metries (3). Namely, we have

Mp;~pp(Sa)SS~Sg)

,4,;-p.(s.') 1 ~",e,;p- (»')
JSa + dSS

7P ~ 4~4 Sa —S~+ isl'e~ 4
~ SS SS+1e

1 p" P,.„p (s,')
+— ds.' . (24)

Sg —Sp+se
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We now make a subtraction in each term, at the sym-
metric point s =sq=s, =so. At this point A =8
=C=DO where Do is a complex constant. We can now
use (1), (21), and (22) to obtain from (24) three separate
dispersion representations for each of the amplitudes A,
B, and C. We obtain

where

A ($,$ ps,)=Dp+ U(s,)+V(sp)+ V(s,),
B(s„sp,s,) =Dp+ V(s,)+U(s p)+ V(s,),
C($,$p, s ) =Dp+ V ($ )+V (sp) +U ($ );

(25)

(s—sp)
U(s)=, ds'

B(s.) =
dQ,

B{s„cos0p,),

p dQg,
C(sg) =, C($~, cos8b~)

4m.

In (2"I) as in (21) the angles refer to those in the refer-
ence frame where k p+k. =O. We note here that because
of the symmetries (3), 2 obtained from the angular
integration in the frame kp+k, =O is identical with the
B obtained from the corresponding angular integration
in the frame k,+k,=O. This is why only three functions
2, B, and C appear in (25) and we can define them all in
the same reference frame as in (27).

It is evident now that we can, by integrating the
equations (25) over cos8&„obtain a set of coupled linear
integral equations for the functions A(s), B(s), and
C(s). These functions are themselves analytic in the
s plane, except for cuts along the real axis. We have
seen no way to obtain a rigorous solution of this system
of equations. Should the situation warrant it, one could
resort to numerical methods. For the present, in order
to obtain some indication of the eGects involved we
shall treat the pion-pion eGects as a small perturbation
and adopt a lowest order iterative solution of (25); i.e.,
we set A =B=C= Dp in (27) and (26). In the physical
region, in view of the actual experimental indications,
this is a good trial solution since the departures from a
statistical decay spectrum are small.

We are not concerned with the magnitude of Do, and
we can factor it out from the iterated solution of (25).

~($')fp($')+pEB(s')+C(s')Xfp($') —fz($') j
X

r(s' —sp+ze) (s' —s+zp)
(26)

($—$o) f'",-'EB($')+C(s') jf (s')
V(s) = — ds'

vr "4„~ (s' —sp+ie) (s' —s+ze)

and
p dQp,

2 ($0) = A {sg) cosOp~))
4m.

From (4), (5), and (25) we can now write the squared
matrix elements for the 7. and r' modes of E-meson
decay. We have, aside from an over-all factor common
to both,

(M, ('=4(1+-', fU(si)+V(si) j
+kLU(»)+ V(»)1+V(») I' (2g)

iM, ('= F1+V(si)+V(sp)+U(sp) i', (29)

where U(s) and V(s) are given by (26) with unity sub-
stituted for A, B, and C. In each of the above expres-
sions, s~ and s2 refer to the like mesons, s3 to the unlike
meson; and in the E-meson rest system

s;= (zzz —tz)' —2zzzT,

where T; is the kinetic energy of the ith meson.

(3o)

IV. SCATTERING LENGTH PARAMETRIZATION

In the lowest order iterative solution the basic ampli-
tudes U and V have been reduced to well-de6ned
integrals over the pion-pion scattering functions fp and
fz These a. re, of course, not yet known experimentally;
it was in fact in order to get some indication about them
that we have undertaken the present analysis. We can-
not expect to make much progress, however, unless we
can parametrize these functions in a relatively simple
way; either this, or else try one at a time specific and
perhaps more complicated expressions which may be
suggested from other sources. At present it seems most
reasonable to adopt a scattering length characterization
of the phase shifts; or rather, a relativistic generalization
thereof. We take

(k/pi) cotter 1/az,—— (31)

where k and M are the center-of-mass. momentum and
energy, and az is the dimensionless scattering length
(roughly, the conventional scattering length in units of
the pion Compton wavelength). This structure accords
reasonably well, up to moderate energies, with the so-
called 5-wave dominant solutions which Chew et al. s

have obtained for the pion-pion scattering integral
equations. With this form we then have

fr e'pz' sinbr =kar/——(pi —ikar), (32)

and the integrals (26) are readily carried out.
For practical purposes it is most convenient to take

as variables not the invariant quantities s;, but rather
the kinetic energies of the pi mesons in the E-meson
rest frame. Measured in units of V', the maximum
kinetic energy, these are denoted by 3;, and we have

t,+t,+t,= (zw 3tz)/T=3t p;—
where 30 corresponds to the symmetric point kinetic
energy, to=~~. Notice that the kinetic energy t of one of
the pions, and the momentum k (measured in units of
the pion mass) of each of the other two in their mutual
center of momentum system are related by

k'=p'(1 —t) p'=zzzT/2tz'=064 (33)
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5
-',

j M, j'=1+—,(as —ap) (2ts —1);
3~ (1+sp')'

p2

2
Ir(t) =—(k' —kp')

(40)
10 p'

1
M,.j'=1+— (ap —as) (2ts —1).

3n (1+-,'p')lf~(k')
&& k'dk'. (34)

(k"—k'+2e) (k"—kp'+is)
One sees that to lowest order in the scattering lengths

the correction terms both for v- and r' decay depend,
essentially linearly, only on the energy of the unlike
particle. In each case the coeKcient is determined by the
difference of the scattering lengths, and the y' coeKcient
has twice the magnitude as that for v, but with the
opposite sign.

Gell-Mann and Rosenfeld' showed that a good fit to
the r-decay data, obtained from a plot compiled by
Dalitz, ' is obtained with

This can be readily evaluated. However, inasmuch as we
are presently treating the pion-pion effects as a small
perturbation, we are in eBect computing to lowest order
in az. For consistency we must therefore take

(32')fr kar/(o—.

This quantity is bounded in magnitude by az, assumed
small. This is in fact why we adopted the relativistic
form (31) rather than the conventional expression
(~~ 1), where

1 fz j~ 1 as k ~ ".This latter behavior
would be inconsistent with our perturbative approach.
We now find

(41)jM, j' 1+(2/10)(2ts —1).

Comparing this result with (40) we have

With t and k, likewise to and ko, so related, our basic spectrum. We then find
integral is

with
Ir(t) =Jr(t) —Jr(tp)

hence

p2

(a,—ap) =0.2,
3~ (1+-',p') l

Jr(t)=( ak/r") i+ —ln(a —k) .—
1

(35)

The basic amplitudes U and V, in terms of which the
decay matrix elements are formed Lsee (28) and (29)j,
are given by

U(t) =-', L5I, (t) —2I, (t)],
V(t) =I,(t). (36)

To lowest order we can drop the square of these
quantities in evaluating (28) and (29), so that only the
real part of Jz(t) comes into play. For this, in good
enough approximation we can set ln(ru —k) = —k, hence

Real Jr(t) ~ —(2/vr) (k'/co) ar.

We now have

(35')

s 1 Mr(tl)t2pt3)
1
=1—(2/w) asp {2h(ts)+sh(tl)+ ah(t2) }

—(10/3x)app'{h(ti)+h(ts)}; (37)

j M;(ti, ts)ts) 1'=1—(2/x) asps{2h(ti)+2h(ts) ——;h(ts)}
—(20/3n. )app'h(ts); (38)

with

as —ap=0.7. (42)

5
W, (t) =1+— (as —ap)(2t —1), (43)

3 (1+-',"):
p2

5 p'
W;(t) =1—,(.,—..)(2t-1), (44)

6~ (1+2p')'

10 p'
W, +(t) =1—— (as—ap)(2t —1) (45)

3w (1+-'p')

If this is a difference of much larger numbers then, of
course, our perturbation approach is not valid. How-
ever, if the scattering lengths are comparable to unity
then our first order approximation may not be mis-
leading. If one iterates twice and looks at the terms of
order a', one finds that for scattering lengths of order
unity the second order terms are at the worst points only
25% of the first order terms.

I,et us introduce the functions 8,-, H/', +, and S', +,
which describe, respectively, the uncorrelated energy
distributions of the ~ and z+ mesons in 7. decay and of
the x+ meson in the w' decay. In order to bring out most
clearly the sects under consideration we measure these
relative to the purely statistical distributions. We then
Qnd

h(t) tp 2 (39) The three slopes stand in the ratio r(—): r(+):
L1+p'(1—t)j' t:1+p'(1 —tp)3' r'(+)=1: —2: —2." On the experimental side it

For rough purposes it is a good enough approxima-
tion, 6nally, to set t= tp in the denominator of (39); this
involves an error at most 15%—at the end of the

9 M. Gell-Mann and A. H. Rosenfeld, Aeeuul Review of Nuclear
Science (Annual Reviews, Inc. , Palo, Alto& California, 1957), Vol.
7, p. 407.

S. einberg, Phys. Rev. Letters 4, 87 (1960).
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happens that the best least squares Gt to the data on
r decay given by McKenna et al.' gives just about the
ratio implied above, though the errors are large and this
agreement must not be taken too seriously. The experi-
mental indication is that the vr spectrum (relative to
statistical) is an increasing function of the energy the
variation amounting to 50% from one end of the spec-
trum to the other. With as —as= 0.8, Eq. (43) would re-
produce the least squares Gt to the data of Mc-
Kenna et al.

Most of the S-wave dominant solutions of the pion-
pion integral equations obtained by Chew, Mandelstam,
and Noyes' have the following general properties:
(i) as and ae have the same sign; (ii) the ratio tte/as is

of the order —', . If one accepts these properties, then our
results will lead to the conclusion that both uo and c2

are negative, hence a repulsive S-wave pion-pion inter-

action. The values a2= —0.3 and co= —i will give
agreement with the data and correspond to X=0.15,
where A, is the Chew-Mandelstam pion-pion coupling
constant.

Finally, we point out that a very useful test of the
results of this paper would be provided by looking at
the m+ spectrum in the r'-decay mode. "
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The problem of unstable particles in quantum 6eld theory is treated as one of the interpretation of complex
singularities appearing in the analytic continuation of scattering amplitudes into unphysical sheets of their
Lorentz invariant variables. Suitable continuations are shown to hold under certain restrictive assumptions
in a general 6eld theory, making use of unitarity and causality of the S matrix. The extra singularities
appearing in the continuation are 6xed isolated poles, in accordance with a conjecture of Peierls.

1. INTRODUCTION

~ ~HE problem of the definition of unstable particles
in quantum field theory has received much

attention recently. ' The difhculty met with in framing
such a deGnition lies in the fact that the asymptotic
"in" and "out" states containing such particles do not
exist and so the usual methods of field theory based on
these asymptotic states do not apply. Two main
methods of approach to this problem have appeared.
One of these' is to deGne the mass and lifetime of an
unstable particle in terms of the average mass and mass
spread of a certain mass distribution appearing in the
spectral representation of the propagator. A limitation
is imposed on the high-energy behavior of the vertex
function in order that the mass and lifetime deGned
in this manner exist. This limitation is not satisfied

by the Lee model with a certain cutofP and may not be

*This work is supported in part by the Air Research and
Development Command, United States Air Force.' M. Levy, Nnovo cimento 15, 115 (1959).This paper contains
further references.

~P. T. Matthews and A. Salam, 1958 Arcual International
Coeferersce ors High ENergy Phy-sics, Cerl, edited by B. Ferretti
(CKRN Scientidc Information Service, Geneva, 19SS).Also Phys.
Rev. 112, 283 (1958).

satisfied in a realistic Geld theory. For this reason we
follow here the suggestion of Peierls' that unstable
particles may be associated with poles appearing in
the unphysical sheets of the analytic continuation of
the particle propagator in momentum space. The work
of Levy' and others shows that the Lee model provides
a satisfactory demonstration of this suggestion. In this
paper, we attempt to extend the methods developed
by Levy to a more general Geld theory. However, it is
not yet possible to give a satisfactory definition of the
local field to be associated with an unstable particle in a
general Geld theory satisfying the usual axioms of
causality, Lorentz invariance, and an asymptotic
condition. In consequence, we consider mainly the
interpretation of poles appearing in the scattering
amplitudes and then show that the same poles should
occur in the propagator if it exists. We do not consider
here the decay properties of unstable particles as a
function of time but only how they manifest themselves
as resonances in scattering or production processes.

In Sec. 2, we discuss the continuation of the two-
particle scattering amplitude into the Grst unphysical

' R. E. Peierls, Proceedilgs of the Gtasgoto Cortferertce ort Ngclear
and Mesol Physics (Pergamon Press, New York, 1954), p. 296.


